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A new way of controlling the laser properties of optical materials by designing composite materials that exploit
local-field effects is proposed. It is shown that the basic laser properties, such as the radiative lifetime of the
upper laser level, small-signal gain coefficient, and saturation intensity can be controlled independently by
means of local-field effects. These ideas could be used to design laser systems with significantly improved
properties. © 2007 Optical Society of America

OCIS codes: 160.3380, 160.4670, 160.4760.
y
m
s
s

c
s
p
t
l
e
t
e
p
n
e
o
l
t

2
T
c
[
c

c
a
o
l
t
o
t
i
w

H
i

. INTRODUCTION
anocomposite optical materials are nanoscale mixtures

f two or more homogeneous constituents in which the in-
ividual particles are much smaller than the optical
avelength but still large enough to have their own di-
lectric identities. The optical properties of composite ma-
erials can be adjusted by controlling the constituents and
orphology of the composite structure. Properly tailored

omposites can display the best qualities of each of their
onstituents, or, in certain cases, can display properties
hat even exceed those of their constituents. These fea-
ures render composite materials valuable for applica-
ions in photonics and laser engineering.

It is well known that in dense media the electric field
cting on emitters (the local field) is generally different
rom both the external field and the average (or Maxwell)
eld within the medium [1,2]. Local-field effects have
een shown to be significant in uniform media [3,4]. They
an also be a valuable tool in tailoring laser properties of
omposite materials.

The optical properties of composite materials have been
he subject of many studies (see, for example, Refs. [5–8]).
n particular, the modification of the radiative lifetime of
omposite materials caused by local-field effects was ad-
ressed in many publications both theoretically [9–13]
nd experimentally [14–22]. The influence of the local-
eld effects on the nonlinear optical properties of compos-

te materials is even more significant, as the material re-
ponse scales as several powers of the local-field
orrection factor (i.e., the quantity equal to the ratio of the
ocal field acting on a typical emitter to the average field
n the medium). Theoretical modeling of the nonlinear op-
ical response has been reported for many different geom-
tries of composite materials [23–26]. In particular, rigor-
us theories for Maxwell–Garnett-type composite
aterials [23] and layered composite materials [25] have

een developed. It was shown that a significant enhance-
ent of the nonlinear optical response is possible under

ertain conditions. A number of experiments in the field
0740-3224/07/100A19-7/$15.00 © 2
ielded promising results [27–30]. Thus, a composite-
aterial approach has proven to be a valuable tool in de-

igning optical materials with enhanced nonlinear re-
ponse.

While there have been numerous studies of nonlinear
omposite materials, there has not been a systematic
tudy yet of their laser properties. In this paper, we
resent a study of the influence of the local-field effects on
he laser properties of composite materials. Although
ocal-field effects can come into play differently in differ-
nt composite geometries, separate theoretical investiga-
ions of the laser properties of various composite geom-
tries is outside the scope of this paper. The goal of this
aper is to present a general picture and to show the sig-
ificance of the local-field effects in modifying laser prop-
rties. Thus, we limit ourselves with a simple treatment
f the local field based on the Lorentz model [1,31]. We be-
ieve that the analysis done in this paper will help in fur-
her development of new materials for laser applications.

. COMPOSITE GEOMETRIES
here are three types of composite geometries mainly dis-
ussed in the literature: Maxwell–Garnett composites
5,6,23], Bruggeman composites [30,32,33], and layered
omposites [25,26,29] (see Fig. 1).

The Maxwell–Garnett type of composite geometry is a
ollection of small particles (the inclusions) distributed in
host medium. The inclusions are assumed to be spheres

r ellipsoids of a size much smaller than the optical wave-
ength; the distance between them must be much larger
han their characteristic size and much smaller than the
ptical wavelength. Under these conditions, one can treat
he composite material as an effective medium, character-
zed by an effective (average) dielectric constant, �eff,
hich satisfies the relation [5,6]

�eff − �h

�eff + 2�h
= fi

�i − �h

�i + 2�h
. �1�

ere �h and �i are the dielectric constants of the host and
nclusion materials, respectively, and f is the volume frac-
i

007 Optical Society of America
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ion of the inclusion material in the composite.
In the Maxwell–Garnett model, the composite medium

s treated asymmetrically. It is assumed that the host ma-
erial completely surrounds the inclusion particles, and
he result for the effective dielectric constant of the com-
osite will be different if we interchange the host and in-
lusion dielectric constants in expression (1). This prob-
em is eliminated in the Bruggeman composite model, in
hich each particle of each constituent component is con-

idered to be embedded in an effective medium character-
zed by �eff. The corresponding equation defining the effec-
ive dielectric constant thus has the form [30]

0 = fa

�a − �eff

�a + 2�eff
+ fb

�b − �eff

�b + 2�eff
. �2�

ere �a and �b are the dielectric constants of the constitu-
nt components a and b and fa and fb are the volume frac-
ions of the components.

The third composite model shown in Fig. 1 is a layered
tructure consisting of alternating layers of two materials
a and b) with different optical properties. The thick-
esses of the layers should be much smaller than the op-
ical wavelength. Materials of this sort are anisotropic.
or light polarized parallel to the layers of such a compos-

te, the effective dielectric constant is given by a simple
olume average of the dielectric constants of the constitu-
nts:

�eff = fa�a + fb�b. �3�

he electric field in this case is spatially uniform, as the
oundary conditions require continuity of its tangential
art on the border between two constituents. However, for
he light polarized perpendicular to the layers, the effec-
ive dielectric constant is given by

1

�eff
=

fa

�a
+

fb

�b
. �4�

n the latter case, the electric field is nonuniformly dis-
ributed between the two constituents in the composite,
nd local-field effects are of particular interest.
The composite geometries that we described above are

hose studied most often in the design of composite optical
aterials. In this paper, we limit ourselves to a simple

reatment of a composite material as a uniform medium
haracterized by a dielectric constant �eff. At the present
evel of approximation, the Lorentz model can be used to
escribe the effects of the local field on the laser proper-
ies of the medium [11]. More detailed treatment of laser
roperties of composite materials requires developing
eparate theoretical models for each composite geometry,
hich is beyond the scope of this paper.

Fig. 1. (Color online) Composite material structures: (a) Maxw
. LOCAL FIELD: LORENTZ MODEL
n this paper, we use the Lorentz model of the local field
o account for the modification of the linear laser proper-
ies, such as small-signal gain, radiative lifetime, and
aturation intensity, by local-field effects. In this section,
e briefly review the Lorentz theory of the local field.
Let us assume for now that the medium is lossless and

ispersionless. We represent the dipole moment induced
n a typical molecule (or atom) of the medium as

p̃ = �Eloc, �5�

here � is the microscopic polarizability and Ẽloc is the
ocal field acting on the molecule. (The tilde denotes quan-
ities oscillating at an optical frequency.) The expression

Ẽloc = Ẽ +
4�

3
P̃, �6�

elating the local field to the average (macroscopic) polar-
zation P̃ and the average electric field Ẽ in the medium,
s derived in many textbooks (see, for example, Refs.
1,2,34]). The textbook model used for deriving Eq. (6) is
nown as the virtual-cavity model, because the medium is
reated as a cubic lattice of point dipoles, and a fictitious
phere is introduced as a trick for calculating the local
eld acting on a typical dipole in the medium. An alterna-
ive, more elegant, derivation of the relationship (6),
hich does not require introducing an imaginary sphere,
as described by Aspnes [31].
The macroscopic polarization of the material is given

y the equation

P̃ = Np̃, �7�

here N denotes molecular (or atomic) number density.
sing Eqs. (5)–(7), we find that the polarization and mac-

oscopic field are related by

P̃ = N��Ẽ +
4�

3
P̃� . �8�

e assume that the polarization P̃ is linear in the aver-
ge field:

P̃ = ��1�Ẽ, �9�

here ��1� is the linear optical susceptibility of the me-
ium. Substituting expression (8) into Eq. (9), solving for
�1�, and eliminating the field Ẽ, we find that

rnett geometry, (b) Bruggeman geometry, (c) layered geometry.
ell–Ga
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��1� =
N�

1 −
4�

3
N�

. �10�

xpressing the left-hand side of Eq. (10) as ��1�= ���1�

1� /4� (��1� is the dielectric function of the medium), we
an derive the well-known Lorentz–Lorenz (or Clausius–
osotti) relation

��1� − 1

��1� + 2
=

4�

3
N�. �11�

hrough rearrangement of Eq. (11), we can express the
inear susceptibility as

��1� =
��1� + 2

3
N�. �12�

ubstituting expression (12) into Eq. (9), then Eq. (9) into
q. (7), and using the relationship (5) between the local
eld and the dipole moment, we obtain the equation re-

ating the local field to the average field:

Ẽloc =
��1� + 2

3
Ẽ. �13�

he local field given by Eq. (13) is known in literature as
he Lorentz local field, and the factor

L =
��1� + 2

3
�14�

s known as Lorentz local-field correction factor. Expres-
ion (14) for the local-field correction factor is valid in the
ase of homogeneous media, where all the particles (mol-
cules or atoms) are of the same sort. It is also valid in
aterials where the emitters enter as interstitial inclu-

ions [10,18].
We use the Lorentz model summarized in this section

o phenomenologically study the influence of local-field ef-
ects on the laser properties of composite laser media. As
e pointed out in Section 2, composite materials can be

reated as effective media, as the sizes of the particles of
he constituent components are much smaller than the
ptical wavelength. Under this condition we can consider
composite material as an effective medium character-

zed by an effective (average) dielectric constant �eff.
hus, at the present level of approximation, we can use
q. (14) for the local-field correction factor with the effec-

ive dielectric constant in place of ��1�.

. INFLUENCE OF LOCAL-FIELD
FFECTS ON LASER PROPERTIES OF
IELECTRIC MATERIALS

n this section, we describe the modification of laser prop-
rties, such as the radiative lifetime, the small-signal
ain coefficient, and the saturation intensity by the local-
eld effects. We undertake our analysis based on a simple
rgument of the validity of the Lorentz model for treating
he local-field effects.
. Radiative Lifetime
he radiative lifetime � of emitters in a dielectric material
epends on the dielectric constant of the material. It is in-
ersely proportional to the Einstein A coefficient, which,
n turn, can be expressed through Fermi’s golden rule as

A =
1

�
=

2�

�
�V12��0��2���0�. �15�

ere V12��0� is the energy of interaction between the
mitter and the electric field in the medium, and ���0� is
he density of states at the emission frequency �0. In a
edium with refractive index neff in which the local-field

ffects are significant, the interaction energy scales as

V12,loc 	
L

�neff

. �16�

he factor L enters the expression for the local-field-
orrected interaction energy V12,loc��0� because the local
eld acting on an individual emitter differs from the mac-
oscopic average field. The factor �neff in the denominator
f Eq. (16) comes from mode normalization and thus ap-
ears in the expression for the electromagnetic energy
ensity in a dielectric medium [11]. The density of states
n the medium is proportional to the square of the effec-
ive refractive index:

���0� 	 neff
2 . �17�

sing expressions (15)–(17), we can conclude that the
ocal-field-corrected spontaneous emission rate Aloc in the

edium with refractive index neff is related to the spon-
aneous emission rate in the medium of unit refractive in-
ex (we call it Avac) as

Aloc = neff�L�2Avac. �18�

he relation (18) has been shown to hold also when the
ffect of dispersion is included in V12,loc and in the density
f states [11]. The corresponding relation for the local-
eld-corrected radiative lifetime �loc in terms of the
vacuum” lifetime �vac takes the form

�loc =
�vac

neff�L�2
. �19�

Here and in all later sections of this paper we assign
he “vac” subscript to the variables denoting quantities in
medium with the same chemical environment as that of

he dielectric medium under consideration, but with the
efractive index equal to unity. The variables marked
ith the “loc” subscript denote the local-field-corrected
uantities.

. Small-Signal Gain
n this paper, we focus on laser gain media. Most laser
ain media can be modeled as collections of two-level at-
ms, regardless of what the actual level diagram of the ac-
ive medium is, because in most cases the nonradiative
ransitions are much faster than the radiative transition
rom the upper laser level. We use the two-level-atom
odel to derive the expression for the local-field-corrected

mall-signal gain.
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We start from the driven wave equation

− �2Ẽ +
1

c2

�2Ẽ

�t2 = −
4�

c2

�2P̃

�t2 . �20�

We limit ourselves to considering scalar fields for sim-
licity.) Here

Ẽ = E�z�e−i�t + c.c. = A0ei�k̄z+�t� + c.c. �21�

s the average electric field. In the general case of a lossy
r amplifying medium, the parameter k̄ is complex: k̄=k
i�0 /2. The real part of k̄ is the wavenumber:

Re�k̄� � k =
�neff

c
, �22�

here neff is the effective refractive index of the medium,
hile the imaginary part of k̄ characterizes amplification

r attenuation in the medium, according to

Im�k̄� =
1

2
�0 = −

1

2
g0. �23�

ere �0 and g0 are the small-signal intensity absorption
nd gain coefficients, respectively. We seek the solution
or the local-field-corrected small-signal gain coefficient,
hich we denote as g0,loc.
We take the polarization P̃ entering the wave equation

20) to be linear:

P̃ = �loc
�1�Ẽ, �24�

here �loc
�1� is the local-field-corrected linear susceptibility.

or a collection of two-level atoms [35],

�loc
�1� = −

c�0,vac�
�

4��ba
L�T2
 − i�, �25�

here �ba is the frequency of the atomic transition, L is
he local-field-correction factor, 
=�−�ba is the detuning
f the optical field with respect to the atomic transition
requency, and T2 is the coherence relaxation time. The
acuum absorption �0,vac�
� experienced by a weak opti-
al wave detuned from the resonance is given by [35],

�0,vac�
� = −
4��ba

c

Nweq��ba�2T2

��T2
2
2 + 1�

, �26�

here weq is the equilibrium value of the population in-
ersion, N is the atomic number density, and �ba is the
ransition dipole moment of the two-level atom.

The local-field-correction factor L, given by Eq. (14) as
= ��eff+2� /3, can be shown to take the form

L =
T2
 + i

T2�
 − 
L� + i
, �27�

f one chooses to express �eff in terms of atomic param-
ters as [4,36]:
�eff = 1 −
fre�0cN


 − 
L + i/T2
. �28�

ere 
L=−�fre�0cN� /3 is the Lorentz redshift [4] (f is the
scillator strength of the atomic transition, re=e2 /mc2 is
he classical electron radius, and �0 is the vacuum tran-
ition wavelength). The Lorentz redshift appears in the
xpression for �eff as a consequence of the local-field ef-
ects and leads to L�1 (note that if 
L=0, then L=1, and
here are no local-field effects).

Substituting the electric field given by Eqs. (21)–(23)
nd the polarization in the form of Eq. (24) into the wave
quation (20), then taking the time and space derivatives
nd dropping the electric field that appears as a multipli-
ative factor on both sides of the resulting equation, we
nd up with the equation

g0,loc = −
4�k

neff
2 Im��loc

�1�	 �29�

or the gain coefficient. Substituting the factor L given by
q. (27) into expression (25) for the linear susceptibility,
nd then Eq. (25) into Eq. (29), we arrive at the expres-
ion

g0,loc�
� = −
�0,vac�
�

neff

�

�ba
�L�2 =

g0,vac�
�

neff

�

�ba
�L�2 �30�

or the local-field-corrected small-signal gain in terms of
he vacuum absorption coefficient �0,vac�
�, or vacuum
ain coefficient g0,vac�
� (i.e., the absorption or gain coef-
cient in a medium with the unit refractive index). As-
uming that the optical wave is in resonance with the
tomic transition �
=0�, we find the following expression
or the local-field-corrected gain coefficient:

g0,loc�
� = −
g0,vac�0�

neff
�L�2. �31�

t is in agreement with that obtained by Milonni [11].

. Saturation Intensity
n this section, we use the following convention regarding
he way we denote different variables. We assign the vac
ubscript to the variables describing quantities in a me-
ium with unit refractive index, no subscript to variables
enoting non-local-field-corrected quantities in a medium
ith the refractive index neff, and the loc subscript to vari-
bles denoting local-field-corrected quantities.
The gain g for a homogeneous atomic transition satu-

ates with increasing signal intensity I= �neffc�E�2� / �2��
ccording to [37]:

g =
g0

1 + I/Is
. �32�

he saturation intensity is the intensity that reduces the
mall-signal gain coefficient to a half of its value; it is
iven in terms of the atomic transition parameters by
35]:
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Is =
cneff

2�

�2

4��ba�2T1T2
. �33�

ere T1 is the population relaxation time.
To account for local-field effects in Eq. (32) for satu-

ated gain coefficient, one has to substitute the local-field-
orrected counterparts of the quantities entering the
quation. We obtained an equation for the local-field-
orrected small-signal gain coefficient g0,loc in the previ-
us section [see Eq. (31)]. The local-field-corrected inten-
ity can be written as

Iloc =
neffc

2�
�Eloc�2 =

neffc

2�
�L�2�E�2 = �L�2I. �34�

xpression (33) for the saturation intensity contains two
uantities that may be affected by local-field effects,
amely, T1 and T2. We assume that T2 does not depend on
he local-field correction factor, as would be true for many
ine-broadening mechanisms. Thus, we can simply retain
he vacuum value of T2 in the equation for the saturation
ntensity. T1 is the lifetime of the upper laser level, which
e assume to be purely radiative. Thus, the result Eq.

19) obtained earlier applies:

T1,loc =
T1,vac

neff�L�2
. �35�

aking use of Eq. (35) and the assumption that T2 does
ot introduce local-field correction to the expression for
he saturation intensity, we find that

s� =
cneff

2�

�2

4��ba�2T1,locT2,loc
=

cneff

2�

�2neff�L�2

4��ba�2T1,vacT2,vac
. �36�

n Eq. (36), we denote the saturation intensity Is� in order
o discriminate it from both the non-local-field-corrected
aturation intensity Is and the local-field-corrected satu-
ation intensity Is,loc, as we did not account for all the
ocal-field corrections affecting the saturation intensity
et.

The local-field-corrected saturated gain coefficient can
e written as

gloc =
g0,loc

1 +
Iloc

Is�

�37�

n terms of the quantities given by Eqs. (31), (34), and
36). We define the local-field-corrected saturation inten-
ity so that, if written in terms of it, Eq. (37) takes the
orm

gloc =
g0,loc

1 +
I

Is,loc

. �38�

aking use of Eqs.(36)–(38), we express the local-field-
orrected saturation intensity in terms of the vacuum
aturation intensity as

Is,loc = neff
2 Is,vac. �39�
. ANALYSIS
he basic operation of lasers can be characterized most
imply in terms of the upper-level spontaneous emission
ifetime �, the laser gain coefficient g, and the gain satu-
ation intensity Is. All three of these parameters can be
ontrolled through use of composite material geometry. In
he simplest formulation of local-field effects, we can as-
ume that these laser parameters depend only on the ef-
ective value neff of the refractive index of the host mate-
ial. We showed in the previous sections of this paper that
he basic laser parameters scale with the effective refrac-
ive index according to

Aloc = neff�L�2Avac, �40a�

g0,loc =
�L�2

neff
g0,vac, �40b�

Is,loc = neff
2 Is,vac. �40c�

he quantities marked with vac denote the values of the
arameters in a medium with the same chemical environ-
ent but with the refractive index equal to unity.
Treating the composite laser gain medium as an effec-

ive medium and assuming that the amplification (and
oss) at the laser transition frequency is small enough to
eglect the imaginary part of the effective dielectric con-
tant �eff, we can express the local-field correction factor,
iven by Eq. (14), as

L =
neff

2 + 2

3
. �41�

aking use of expression (41) for the factor L, we plot the
ocal-field-corrected basic laser parameters, given by Eq.
40), in Fig. 2. We choose the range of refractive indices
vailable in dielectric composite materials. Clearly, sig-
ificant control over the laser parameters is available
hrough use of a composite geometry.

Control of the three laser parameters is crucial for the
evelopment of laser systems for the following reasons.
1) The upper-state lifetime controls how large the pump-
ng rate of the laser needs to be in order to establish a
opulation inversion. (2) The gain coefficient determines

ig. 2. Variation of the principal parameters that controls the
asic operation of a laser with the effective refractive index of the
omposite material.
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he laser threshold condition. The gain needs to be large
nough for the laser to reach the threshold, but it is not
esirable for the gain to be too large because excessive
ain can lead to the development of parasitic effects such
s amplified spontaneous emission. (3) The saturation in-
ensity (and its related energy quantity, the saturation
uence) determines the output power of a laser, from the
oint of view that the output power is determined by the
ondition that the saturated round-trip gain must equal
he round-trip loss. In practice, the output intensity of
ost lasers is typically a factor of several times the satu-

ation intensity.
Our assumption that local-field effects in composite la-

er gain media can be accounted for using the Lorentz
odel with the effective refractive index entering the ex-

ression for the factor L is good for conceptual under-
tanding of how the local-field effects help one to manipu-
ate the laser parameters. For a more precise and detailed
nalysis of a particular composite geometry, a more so-
histicated model needs to be developed. This portion of
ork is in progress.

. CONCLUSIONS
e propose a method for controlling and tailoring the ba-

ic laser properties of laser gain media, such as the radia-
ive lifetime of the upper laser level, the small-signal gain
oefficient, and the saturation intensity. The idea behind
he method is designing new composite materials by mix-
ng two or more materials on a nanoscale to obtain new
aser gain media with the laser properties enhanced com-
ared with those of the constituents. The enhancement
an be achieved by implementing local-field effects that
an significantly modify optical properties of materials.
he composite-material approach has been used for en-
ancing the nonlinear properties of dielectric

23–27,29,30] and metal-dielectric [28,38] composites.
owever, we are unaware of any previous systematic

tudy of the modification of the laser properties of com-
osite materials by the local-field effects.
In this paper, we report a preliminary study of how

ocal-field effects can help one to change the laser proper-
ies of composite materials in a desired way. This proof-
f-principle study shows that it is possible to indepen-
ently control the radiative lifetime, gain coefficient, and
aturation intensity. The equations demonstrating how
hese basic laser characteristics scale with the effective
efractive index and the local-field correction factor were
erived [see Eqs. (40a)–(40c)]. We believe that the equa-
ions can be used for different composite geometries. Al-
hough our approach is general to all composite geom-
tries for the linear optical regime and can be used with a
ood precision for predicting the linear laser properties,
ore complete theories, unique to different composite ge-

metries, are needed. We are currently working in this di-
ection.
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